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Abstract—It is always a great challenge to maintain industrial
scale software. It requires to fully understand and be aware of the
different components and their connections to avoid introducing
software errors. Aiding the process of software maintenance by
visualisation is a very timely topic, as it is easier for humans to
understand visualised information. In our paper, we introduce
Gview, a new tool for interactive graph representation. The
presented graph is interactive and utilises the GPU to speed up
layout generation. As proof of concept, we integrated Gview with
RefactorErl. Refactorerl is a source code analyser and refactoring
tool that also supports code comprehension. The tool represents
the syntactic and semantic information in the Semantic Program
Graph, containing a massive amount of nodes and edges.

Index Terms—software visualisation, code comprehension, Er-
lang, Gview, layout generation, RefactorErl, GPU utilisation,
interactive

I. INTRODUCTION

Visualisation of software is mapping a software system and
its architecture to a visual representation. The created view
can be static, interactive or even animated [5].

The visual representation of software may improve the
productivity of developers, as it supports code comprehension,
helps to find inconsistencies and to improve the quality. The
software visualisation extracts and combines closely related
information of the system. The visualised representation is
easier to comprehend than gathering the same information
manually from the source code.

RefactorErl [3] is a static source code analyser and trans-
formation tool for Erlang. It aims to support the everyday
code comprehension tasks of the Erlang developers. Since
presenting the semantic information about the source code is
quite natural on a graph, we started the Gview project as a new
graph visualisation component for RefactorErl. The main goal
was to be capable of rendering the huge Semantic Program
Graphs [10] as well.

The main contributions of this paper is the introduction
of Gview that is a new interactive graph visualisation tool.
Gview was designed to utilise the GPU resources, to provide
different layout generation mechanisms, to support a generic
data transfer protocol and an easy to use interface for different
tools. We present the integration of Gview with RefactorErl
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and some use cases. However, the tool was designed for
software visualisation, its usage has no restrictions.

The rest of the paper is structured as follows. The rest of this
Section introduces the tool RefactorErl and the first prototype
of Gview. Section II presents details about the generalised
and RefactorErl independent Gview and its integration with
RefactorErl. Section III describes how to use Gview for code
comprehension. Finally, Sections IV and V present related
work and conclude the paper.

A. Background

Erlang [1] is a functional, concurrent programming language
that was designed to build distributed, soft real-time, robust,
fault-tolerant applications. Although the language is func-
tional, the industrial scale applications require tools to support
software maintenance, code comprehension, refactoring, etc.

RefactorErl [3] was designed to provide a static source code
analyser framework with thorough static semantic analyses for
the programming language Erlang. The tool offers a wide
range of source code transformations as well. RefactorErl
represents the source code in a so-called SPG, the Semantic
Program Graph [10]. The SPG contains the syntax tree of the
source code enhanced with lexical information, and different
analysers are adding semantic information about the source
code relations.

The tool [22] provides more than twenty refactoring steps
for the users. Besides the well-known renaming, moving,
etc. transformations RefactorErl supports parallelisation by
refactorings [4], [15], [34].

RefactorErl aims to support code comprehension in various
ways. It defines a query language [33] to allow user-defined
semantic queries about the source code and present the gath-
ered information in different formats. For example, the web
interface of the tool lets the user navigate between the source
code and the results of the queries.

It also implements dependence analyses of software com-
ponents and is able to utilise the dependence relations for
software clustering. RefactorErl defines a duplicated code
detection [24] and elimination component.

RefactorErl is able to handle industrial scale applica-
tions [31]. For that size, the Semantic Program Graph and also
the gathered views are so huge that a static graph visualiser



is not able to present it to the developer. However, it is not
necessary to show the entire graph to the user. In most of the
time the user wants to check a filtered subgraph, a predefined
view only, and explore the rest of the graph interactively.

Therefore we started to build Gview as part of the Refac-
torErl project to visualise different views of the Semantic
Program Graph. The very first version of Gview [12] was only
able to visualise the module/function views of the SPG that
was printed to a static dot file [14].

II. GVIEW – VISUALISING SOFTWARE COMPONENTS

Our solution for the problem of visualisation can be broken
down into four sub-tasks: data transfer, layout generation,
displaying the graph with the generated layout and handling
user interactions. We define different views of the graph, for
example for a given variable, all the different ways data could
be assigned to the variable forms a dataflow view. These views
have a specific meaning in the context of the host application
(RefactorErl) and thus must be generated by it and converted
into a visual description containing all the desired graphical
properties of the resulting plot such as line thickness and
colour. Figure 1 shows an overview of internal structure of
Gview.

Fig. 1. Representation of the inner division of sub-tasks in Gview.

A. Data Transfer
The first sub-task is to transfer this representation. Our

initial approach was based on an intermediate data storage
such a file formatted in the DOT language of Graphviz, where
RefactorErl would export the whole SPG, often resulting in
hundreds of megabytes in size and thus in slow startups.
This method also brought the additional cost of our method
being dependant on the specifics of the Semantic Program
Graph. To improve the visualisation, we introduced dynamic
data transfer [17]. The transfer is done through our binary
protocol which was designed to be host independent while
being as efficient as possible while not forming a performance
bottleneck. The protocol defined in our work also has a con-
trol layer that enables host applications to programmatically
change properties of the plot such as the used layout algorithm.

Our protocol is a byte protocol, meaning it can be used over
any stream that is able to transfer bytes between applications
such as TCP/IP. Our implementation with RefactorErl uses
the Erlang Ports interface which builds on the standard input
and output file handlers of the graph plotter. First, the host
application and the plotter exchange a two-way handshake
message as seen on Figure 2, stating the used version of the
protocol, which is currently 1.0, resulting in an error if the
two are not compatible.

Fig. 2. The initial two-way handshake message. Not a large but a rather
important message.

After that, the plotter application is up and running, and
is waiting for new commands. The command string is sent
in ASCII encoding, while label string in UTF-8. The first
important command is to change the layout generation algo-
rithm. For example, to change the layout from force-directed
to hierarchical. To accomplish this, the host must send two
messages: ”set layout” and the id of the new algorithm,
for example, ”layered” for layered hierarchical as seen on
Figure 3.

Fig. 3. Example of a message sent by the host to set the used layout algorithm
to layered.

The host can also issue a plot command via sending
”set view” then sending the description of the graph. A
summary of this message can be seen on Figure 4.

Fig. 4. Summary of the complete plot message.

Sending a graph description begins with sending four inte-
gers: the number of nodes, the size of the node palette and
edge palette and the number of selectors (details on selectors
in Section II-D). Each entry of the node palette describes the
appearance of a given type of nodes, consisting of the radius
and the shape of the node. Similarly, one entry of the edge
palette holds a preferred width and colour of the edge and the
shapes on the end of the given edge. This visual description of
the nodes and edges can be extended in the future. After the
integers, the entries of the node palette and the edge palette
are sent, each in a separate message. In the next messages,
the labels of the nodes, the tooltip strings, the selector counts
and selector labels are transferred. After that, a list of integers
is sent for each node, denoting the neighbouring nodes of the
current node (edge list representation). These integers hold the
local id of the nodes which is the number of the given node



and thus independent of the global id (used in the host) of the
node. The last step is to send node weights, node types, edge
weights and edge types. Types are integer lists while weights
are lists of floating point numbers. The structure of the header
and the palette entries can be seen on Figure 5.

Fig. 5. The header message and the palette entry messages of a set view
message.

Node and edge types indicate the id of the entry in the
palettes (node and edge palette respectively) at which the
description of the given node or edge is located, with this
palette method, a huge bandwidth reduction can be achieved
for a lot of nodes and edges often share these details. Weights,
on the other hand, can mean different properties depending on
the currently used layout algorithm but in general they can be
understood to represent the importance of a node or edge, for
example when using the force-directed layout, more important
edges are generally shorter and more important nodes repel
other nodes stronger. The key idea to make the transfer fast
is that since each message is preceded by a four-byte integer,
containing the length of the message, we can create a byte
buffer from all the messages and let the used implementation
stream the bytes in an efficient manner.

B. Layout

The second task we defined is to generate a suitable layout
for the view that is currently being plotted. Many layout
algorithms have already been developed as this is an important
field of visual computing. In our previous paper [18], we
presented an efficient GPU parallel extension to the famous
Force-Directed Layout algorithm and also a cheap layered
layout based on The Sugiyama Method.

The main idea in the Force-Directed Layout (FDL) is to
build a physical system corresponding to the graph; each
node gets represented by a negatively charged body while
edges become springs between these bodies. According to
the Coulomb law and Hookes law, given their position, the
acting forces can be expressed on each body, which results in
a differential equation system with time as the variable of the
unknown function. The goal is to find an approximation for the
unknown function. The fixed-point of this function represents a
physical equilibrium of the system, that will be the final layout
generated by the algorithm. To approximate the unknown
function, we use the higher-order Runge-Kutta methods, which
are excellent candidates for massive parallelisation. In our

previous paper, we worked out the details of parallelising
this algorithm in a highly efficient manner and cover various
memory and workload optimisations too.

An example of a Gview generated force-directed layout for
a 8 by 8 grid is shown on Figure 6.

Fig. 6. Force-directed layout

The Layered Hierarchical Layout [2], [6], [28] generation
algorithm starts with assigning nodes to layers, which layers
will determine the Y coordinate of the final position of the
node. In the next step, the algorithm calculates orderings of
nodes on each layer as to minimise edge crossings, since this
is a very hard (NP-complete) task even for two layers, different
approximations are employed here. In the final step X and Y
coordinates get calculated for each node. Out version of the
algorithm aims to assign more horizontal space for nodes with
more descendants on deeper layers, which tends to produce
visually pleasing layouts for graphs that possess a tree-like
structure. The layer assignment and the crossing minimisation
can be done in various ways and can be found in many related
research papers.

An example of a Gview generated layered layout for a
relatively small random tree is shown on Figure 7.

Fig. 7. Layered layout

While Layered Hierarchical Layout is great for trees, the
Force-Directed Layout is a great algorithm to generate layouts



for graphs with no special properties or specific structure such
as function call graphs. Thus our tool, Gview uses the Force-
Directed Layout as the default layout algorithm for graphs for
the algorithm produces visually pleasing layouts. The currently
employed algorithm can be dynamically changed through our
data transfer protocol. Gview is extensible and in the future,
we plan to investigate more layout algorithms such as layout
generation by Stress-Majoring.

C. Plotting

Since our goal is to develop an interactive visualisation, the
third task plays a very important role. While the layout is
calculated, the tool presents and maintains the latest specified
view using the graphical description. We aimed to preserve
platform independence while also not sacrificing low-level
access to hardware and thus the ability to gain control on
the massively parallel architecture of modern GPUs. Thus we
based Gview on the cross-platform application programming
interface (API) OpenGL (Open Graphics Library) [25]. With
OpenGL one is able to utilise the GPU to render the 2D
meshes generated from the layout algorithm. It also features
Compute Shaders that are Shader Stages that can be used for
computing arbitrary information. In our implementation, we
use Compute Shaders to support FDL parallelisation. While
OpenGL enables low-level control of the GPU, to handle
user interaction such as a click of the mouse button, or
keyboard shortcuts and to actually open a window in which
the OGL rendering commands can take effect, we used the
library Flib. Flib [13] is an open source GUI (Graphical User
Interface) library built on top of OpenGL, written in C++
and hosted on Github. It is also multi-platform and uses the
native window handling library on each supported system, for
example, WINAPI on machines running Windows. The GUI
functionality of Flib is backed by wrapper classes around OGL
objects, such as the Array Buffer Objects (ABOs), to take
advantage of OOP concepts like RAII (Resource Acquisition
Is Initialisation) to ease the task of resource management and
in the same time remain as efficient as possible. Based on
the resource handling classes Flib contains a sprite engine
featuring automatic image packer called a texture atlas for
packing images on a single OGL texture object to then be used
by the engine. These sprites only contain small information,
such as position, size, rotation and occupied rectangle on the
texture atlas and thus by realizing the background of each
GUI entity, such as buttons and sliders, using sprites, all
of them can be drawn in a single draw command. Text is
displayed in a highly similar manner: each font gets a personal
texture atlas and characters are plotted via sprites. The GUI is
modelled as a tree in which each node is a GUI element.
The events are passed in a top-down manner, thus every
element receives and reacts to each event. To automatically
convert basic events such as mouse movement and mouse
wheel scrolling into more complex events like zooming or
rotation, Flib uses listener classes one can inherit from to
acquire desired callback functions. Flib also has utility to
tessellate line segments into thick lines built from triangles

and generate distance to edge values which we used when
employing the anti-aliasing technique DEAA [11] (Distance
to Edge Anti Aliasing).

Since we aim at interactivity, we wanted to minimise the
time spent on the actual drawing while maintaining good
quality graphics. Upon each event such as mouse wheel move-
ment, dragging with the mouse or when a new approximation
of the final layout is created, the plotting data is used to
generate drawing meshes (tessellated on the CPU) using Flib.
For each visible node, we create a regular polygon with n
sides, depending on the zooming level and the requested
shape of the node. This dependence on the zooming level
is called Dynamic Level of Detail. We use this technique
to reduce the generated geometry by up to a factor of 100.
We also tessellate each visible edge of the plot and send the
resulting geometry in one batch to the GPU memory. This
streaming process, thanks to the small amount of geometry,
takes only a fraction of the update time. Since the drawing
is organized into single batches per triangles and lines, we
can issue the drawing in only two draw calls which minimise
drawing setup costs. The events mentioned above may seem
to be frequent to the user. However, at 60 events per second
peak with thousands of nodes, it is still an easily manageable
task for an average modern CPU. We conducted measurements
hundreds of frequently occurring views (about 20 to 30 nodes
per view) and determined the amount of time needed to parse
the input graph description from our binary protocol was at
most 5ms which is not at all significant. Updating the layout
using parallel FDL with one iteration, however, although only
taking around 1ms, needs to be calculated a large number
of times. We also evaluated the time taken to tessellate the
given view into raw drawing data, which as our predictions
showed, do not take up much of the update time (around 0.5ms
at most). Since we are running the layout generation on a
separate thread (see Section II-D) synchronising the data on
the drawing thread and the worker thread takes up time too,
but it is not significant. The summary of our measurements is
shown on Figure 8.

Fig. 8. Relation of the time spent on transferring a view, updating one iteration
on it, drawing it and synchronisation. Note that layout updates occur much
more frequently than data transfer.



D. Interaction

User interaction happens through the Graphical User Inter-
face of Gview, backed by Flib, built on top of OpenGL, via
mouse clicks, keyboard buttons, etc. Hovering over a node
or the label of the node highlights it and reveals smaller
nodes around it, called selectors, indicating the selected node.
Selectors only have a label and can be specified from the
host application as described in Section II-A. Different type
of nodes may have different set of selectors, for example,
a function node has an expand selector if it is the centre
of the view for expanding the call depth shown and a lex
selector to switch to the lexical nodes of the SPG spanning
from the function node. Clicking a node triggers message
sending. It sends the host application the clicked and node
messages and an integer representing the id of the node.
When a selector is clicked, beside the messages clicked,
selector and the node id, the number of the selector is also
sent. Certain key combinations, like CTRL+Z and CTRL+Y,
also produce messages undo and redo accordingly. With
these combinations, the user can go step by step back and
forward in the history of previous steps. The host application
can react to these events by loading a new view or ignore them
at all without any problem.

Our previous approach [12] was a single threaded design.
Thus, the layout generation, drawing and user input handling
were done on the same thread. In some cases, when the layout
generating algorithm took more time than usual, it delayed
user interaction handling. To remedy this problem, we split
up the process into two threads as shown on Figure 9: the
first responsible for user interaction handling and drawing
the actual graph quickly from the last synchronised layout,
the second responsible for layout generation. The two threads
share a mutex used to protect the shared layout data which is
updated by the worker thread after every iteration, or after
the completion of the generation if the algorithm is non-
iterative. This way the zooming and translating can remain
interactive even with heavy layout calculations in exchange
for a synchronisation overhead.

E. Integration with RefactorErl

RefactorErl already contains numerous refactorings and
code comprehension supporting functionalities. To further
enhance the code comprehension capabilities, we wanted to
extend it with graph plotting capabilities to allow traversal of
the Semantic Program Graph (SPG) interactively. Our design
of the graph displaying component of RefactorErl relies on the
strength of the Erlang programming language: robustness. The
SPG can grow to an enormous size (hundreds of thousands,
or millions of nodes and edges), thus when one wants to
display only the closely related entities of a subgraph in
focus the dynamic capability of Gview is a good match. The
implementation uses Erlang ports for dynamic data transfer
and command protocol between RefactorErl and Gview. The
standard input and output of the opened application (Gview in
our case) are turned into binary input and output channels.
Through this channel, the processes can communicate by

Fig. 9. Interaction of the rendering thread which also handles the user
interaction and the worker thread that generates the layout.

sending and receiving messages. On Windows, this is not that
straightforward as the newline characters are changed which
require special handling. The exact mechanism of the Erlang
Ports is implementation dependent, however, according to our
estimations, even larger views of thousands of nodes can be
sent quickly. To confirm our estimation, we measured the data
transfer rates on one hundred views of different sizes ranging
from the trivially small to even two thousands of nodes and
found that the loading times never exceeded one-third of a
second, proving that the Erlang Ports are capable of delivering
sufficient speed. The philosophy of Erlang is said to be ”Let
It Crash”, which means that fail safety on the grander level is
achieved by creating smaller building blocks that can be let to
crash and then restarted without the end user even noticing it.
This philosophy is reflected in the fact that the communication
between the static analyser and the plotter is governed by
an Erlang server, gview_server. The responsibility of
gview_server is to accept incoming plot requests, layout
changes and based on them create the necessary data to be sent
to Gview and also receive and propagate events from Gview to
the view switch handling code. For large graphs, as dataflow
graphs, it may take some time for this server to collect the
necessary information for plotting. The gview_monitor is
a server process that monitors the gview_server and acts
as a proxy between the user/program and Gview. Thus the
caller of the Gview interface of RefactorErl does not have to
wait to receive the data until the graph query finishes. Since
Gview is an external program RefactorErl stays unaffected by
an unexpected failure of Gview.

The module gview gives an interface that hides the mon-
itor and the server and makes the usage of the tool much
more intuitive. Interface functions such as gview:start/0,



gview:layout/2 or gview:load/2 can be used to pass
commands to Gview, for example P = gview:start()
starts a new instance of Gview and assigns its identifier to
variable P which then can be used to plot all the loaded
modules and functions via gview:load(P,modules) or
change the layout view gview:layout(P,layered) or
query the status of the connection via gview:status(P).
An overview of the application structure can be seen on
Figure 10.

Fig. 10. Our graph visualisation architecture, Gview.

III. USING GVIEW FOR CODE COMPREHENSION

In this section, we show two use cases to demonstrate
how Gview supports code comprehension. In our use cases,
we analysed the Mnesia DBMS system [16] and built the
Semantic program Graph from it. The first use case generates a
function view of the SPG, while the second uses the syntactic
view to explore the graph searching for possible values of
different language constructs.

Fig. 11. Mnesia view

Figure 11 illustrates the force-directed layout based repre-
sentation of the Mnesia modules and functions. Mnesia has
26 KLOC, which is a medium scale Erlang application. It
contains 1804 function definitions in 30 different modules.
However, the presented view contains the referred functions
and modules as well. Therefore in total 63 modules and 2103
functions are visualised.

After starting RefactorErl’s interactive Erlang shell inter-
face, we can easily start Gview and load the module view
with the following commands:

P = gview:start().
gview:load(P, modules).

Our interactive tool makes it possible to select a node in
the graph and generate a new view. Figure 12 shows the graph
created when we clicked on module mnesia_log.

Fig. 12. mnesia log view

The same view is available through a direct call in the
Erlang shell as well:

gview:load(P, [{modules, [mnesia_log]}]).

The size of these graphs for even this medium scale appli-
cation is too big but makes a good starting point for further
analysis. The interactive nature of the tool makes it possible
to easily dig deeper into the modules/functions/structures to
find the required information.

A. Call graph view

Clicking on the open_log/3 function on Figure 12 results
in the graph showed on Figure 13. Coloured edges differentiate
the functions calling open_log/3 and those that are called
by open_log/3.

Any element of the graph can be clicked to expand the
next level of the call graph. For example, selecting the
open_log/5 label results in the graph showed on Figure
14.

The user can easily switch between the force-directed and
layered layout and choose the most appropriate for the task.
For example, the following command results in the view
presented in Figure 15:

gview:layout(layered).



Fig. 13. open_log/3 function call graph

Fig. 14. open_log/5 function call graph

Using call graphs in software maintenance is useful, it can
contribute to bug detection and fixing and code comprehension
tasks as well. An interactive tool, such as the integrated Gview
to RefactorErl, provides a handful tool to help the developer
to draw and explore the call graph. The semantic information
available in RefactorErl extends the classical static call graph
views with dynamic call information as well [9].

B. Enhanced syntax view

Besides the high-level function view, a developer might be
interested in the details of the implementation as well. At
this point, Gview provides a syntactic view of the functions
and expressions as well. The syntax view of open_log/6 is
illustrated on Figure 16.

The syntax view can be further expanded with new levels
of details from the syntax tree until the developer finds the
appropriate information (Figure 17).

Fig. 15. open_log/5 function call graph (layered view)

Fig. 16. open_log/6 high level syntax view

Fig. 17. open_log/6 high level syntax view

Besides the syntax tree, the interface makes it possible to
reach semantic information from the Semantic Program Graph
of RefactorErl. For example, a view can be generated from the
dataflow information [30], [32]. Once a developer is interested
in the possible origins of a variable, the values that may flow
to the variables are also shown in the graph. For example,
clicking on the variable Mode on the syntax view (Figure 16)
we can deduce from the generated view (Figure 18) that the



possible values are read_write and read_only.

Fig. 18. Values of the variable Mode

However, the desired information is not always available
with a single step. Clicking on Fname on Figure 16 does not
give us the possible values since it is calculated by a function
application (Figure 19).

Fig. 19. Values of the variable Fname

Thus, we have to further investigate the structure of the
application (Figure 20) and select the Fname node in the
tree of the application to find all the possible file names used
(Figure 21).

Fig. 20. Exploring the values of the variable Fname

Exploring the syntax tree and using dataflow relations are
extremely useful in bug fixing task. Once the developer detects
a wrong value at a certain point of execution, the enhanced
syntax tree explorer can help to find out where the wrong value
comes from.

Fig. 21. Exploring the values of the variable Fname

IV. RELATED WORK

Following are some tools suitable for software visualisation
that we would like to compare to our solution.

A. IslandViz

With the tool IslandViz [21], one can explore modular
software systems in virtual reality. The metaphor ”island” is
used for modules, each module representing a distinct island.
The system is displayed as a virtual table, where users can
explore the software by performing navigational tasks on
multiple levels of granularity. The tool enables the users to
get an overview of the complexity of the software and to
traverse the system interactively and explore the modules and
the dependencies between them.

The project is built on Unity, a cross-platform real-time
game engine developed by Unity Technologies. It supports
many target platforms from Android and iOS phones to web
applications and even graphics-heavy 3D shooter games. The
engine offers a primary scripting API in C# which is used by
IslandViz to implement the layout algorithms in the program.
IslandViz offers two layout generation algorithms, one pseudo-
random based and a variant of the Force-Directed Layout. The
random based algorithm incrementally puts nodes (islands)
on random positions, retrying up to fixed times if the placed
island collides with another. The problem with this approach
is that it disregards the actual structure of the graph. The other
available option in the software is an FDL which differs from
our variant. The IslandViz uses regular physical springs as
opposed to logarithmic springs and employs friction instead of
instantaneous forces. However, the real difference lies in the
terminating condition and the underlying mathematical tool.
The computation in IslandViz stops after a certain number
of steps. Our solution is able to keep a moving average of
the maximum relative error thanks to the embedded higher
order methods and terminates only if this error is below a
certain threshold. Our redesign of the Force-Directed Layout
algorithm [18] also targets the massively parallel architecture
of modern GPUs which results in a massive performance
increase over the CPU implementation.

B. Graphviz

Graphviz [7] is a well-known graph visualisation software
package developed by AT&T Labs Research since 1991 and
is open-source. Among the supported layout generation algo-
rithms, there are energy minimizing, stress-majoring methods



and hierarchical ones, each of which has an own program in
the Graphviz package. These programs transform the input
graph, described in a text-based language, and apply the
given technique to produce an image file that can be then
embedded in other applications and web pages. Many details
can be adjusted using these tools, such as the colours, fonts,
tooltips, line styles and the shape of nodes. Among the several
applications that use Graphviz, there are many UML drawing
tools, computer-aided design systems such as FreeCAD.

Numerous software are able to produce graph descriptions
in the native language of Graphviz, the DOT graph description
language. Since the RefactorErl is able to export the entire
SPG to DOT, we tried the approach of parsing the exported
DOT file in the Gview plotter. This version resulted in slower
startups.

There were former attempts at using Graphviz as a graph
plotter for RefactorErl. The resulted graphs were static, and it
was too complicated to switch between different views.

In general, Graphviz targets and excels at the static plotting
of graphs that did not meet our requirement.

C. CodeCity

CodeCity [23] is a software visualisation tool that brings
software systems to the screen with a city metaphor. In the
interactively discoverable 3D city classes show up as buildings
that stretch higher depending on the complexity of the given
class. The buildings that represent classes are grouped into
neighborhoods based on their packages. The program uses
OpenGL to render the scene and was built using VisualWorks
Smalltalk. The goal of the project is to aid users in discovering
software artefacts such as god classes that appear as large
skyscrapers on the landscape.

CodeCity targets the visualisation of different code metrics
and thus is not suited for plotting other relations such as
dataflow or function dependency graphs.

D. CityVR

CityVR [20] is an interactive software visualisation tool that
uses virtual reality to achieve the gamification of software
engineering. Similarly how headphones help to filter noise,
the used I3D medium enables users to isolate from the outer
world in a visual way and thus encourages immersion.

CityVR was built using Unity3D 5.5 and uses CodeCity to
create the displayed model which is generated from source
code files. Since monitors are the most frequently used tools
for software visualisation, a more exciting and thought pro-
voking way of exploring software dependencies and metrics
is using a virtual reality headset. This way users of such
visualisation tools can achieve better recollection [19].

E. Sourcetrail

Sourcetrail [26] is a lightweight source explorer that sup-
ports many mainstream IDEs and code editors. It features
interactive code and dependence exploration and fast searching
functionality. The aim of the program is to help programmers
in quickly finding relevant pieces of code in large projects

without digging through the code base but rather through
interactive diagrams of variables, functions and classes. They
argue that by exploring the code through this visual repre-
sentation, finding important information is much easier and
convenient. By accompanying diagrams with relevant code
snippets, Sourcetrail shortens the investigation time.

Sourcetrail is distributed in a commercial license for de-
velopers and companies and a non-commercial license, but
only for personal usage. It is a standalone program and
integrates with IDEs and editors such as VSCode through free
downloadable extensions.

One drawback of Sourcetrail is that it only supports projects
written in C/C++ or Java and thus is not applicable in case of
Erlang projects.

F. Understand

Understand [27] is a multi-platform Integrated Development
Environment (IDE) developed by SciTools for maintaining,
measuring and visualising code bases. It features many code
metrics from the basics like class or file count to custom
metrics such as knots, path count and weighted methods per
class. Understand employs an incrementally built indexing
that enables users to search quickly in even millions of lines
of code. It supports control flow graphs, hierarchy graphs,
dependency graphs and many more but no dataflow graphs.
Various coding standards can be checked by the tool such as
naming guidelines and general best practices. The tool can
generate overviews, like quality or metrics reports.

Using Understand naturally comes with the limitation that
it has to be the IDE of choice for a project unlike in the
case of Sourcetrail. Despite being able to handle more than a
dozen languages and projects that use more than one language,
Understand does not support Erlang, which is an important
aspect of our scope.

V. CONCLUSION AND FUTURE WORK

Providing tools to support code comprehension and visu-
alise software are highly desirable in industrial-scale develop-
ment. In this paper, we demonstrated our tool, Gview, that was
designed to provide an interactive, dynamic, tool independent
visualisation framework built on top of Flib. Gview also
utilises the GPU to provide efficient layout calculation.

We presented the internal design and structure of the tool.
We demonstrated the data transfer protocol defined as a com-
munication channel to Gview and also the interaction handlers.
The paper describes the graph layout calculation algorithms
and plotting. The current version of the tool supports force-
directed and hierarchical layout generation. In the future, we
plan to extend the options.

We presented the integration of Gview with RefactorErl to
demonstrate the applicability of Gview in large-scale software
visualisation. The usefulness of the tool was shown on code
comprehension use cases through call chain detection and
expression value investigation.

Gview is open source and available on GitHub:

https://github.com/Frontier789/Gview



The integration with RefactorErl will be released soon with
the upcoming release of the tool.

The next step in the evaluation of Gview is to implement
the data transfer protocol for the Testing at Scale project [8],
[29].
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[9] Dániel Horpácsi and Judit Kőszegi. Static analysis of function calls in
Erlang. Refining the static function call graph with dynamic call infor-
mation by using data-flow analysis. e-Informatica Software Engineering
Journal, 7(1), 2013.

[10] Zoltán Horváth, László Lövei, Tamás Kozsik, Róbert Kitlei,
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