
Optimising the Force-Directed Layout
Generation

Mátyás Komáromi, István Bozó[0000−0001−5145−9688], and Melinda
Tóth[0000−0001−6300−7945]

ELTE, Eötvös Loránd University, Budapest, Hungary
{komaromi.matyas,bozo i,toth m}@inf.elte.hu

Abstract. A graph visualisation tool can be invaluable in code compre-
hension. It is a well-known and researched field of graphical informatics.
Several good algorithms were developed, but most of the graph drawing
tools mainly focus on the generation of static drawing. In this paper, we
present an approach to force-directed layout generation that is orders
of magnitudes faster than the trivial implementation. This technique is
based on the Runge-Kutta methods and is efficient enough to visualise
the user-requested parts (views) quickly for a relatively large Semantic
Program Graphs of Erlang projects in soft real-time. Such a graph might
assist code comprehension in the RefactorErl framework even better.

Keywords: RefactorErl · Parallel computation · Graph drawing · Er-
lang · GPU programming.

1 Introduction

Tool-supported software development is an accepted and desirable part of the
software development lifecycle. Several static source code analyser tools exist and
aim to help code comprehension by presenting the analysed data in various ways.
Taking the size of the presented data into account, a focused graph representation
of the required data is one of the most useful.

The tool RefactorErl [4] is a static source code analyser and transformer
tool for Erlang. It aims to present source code dependencies and help in code
comprehension tasks with different graphs. However, the size of these graphs
represented in a static format for industrial scale software goes beyond the limits
a human can comprehend. To overcome this, we needed to define new dynamic
graph views for the users of RefactorErl.

Graph visualisation is a well-known and researched field of graphical infor-
matics. Several good algorithms were developed and reviewed by our days [3].
However, most of the graph drawing tools mainly focus on the generation of
static drawing. Our goal is to create a tool to be able to support dynamic views
and provide an efficient layout generation.

In this paper, we present an approach to a force-directed layout [12] gener-
ation based on the Runge-Kutta methods. This method is efficient enough to



2 M. Komáromi et al.

quickly visualise the user-requested parts (views) of a relatively large Seman-
tic Program Graphs of Erlang projects in soft real-time. We studied different
parallelisation of the method on GPUs to achieve a better performance.

The rest of the paper is structured as follows. In Section 2 we introduce the
RefactorErl tool and our first dynamic graph visualisation prototype, Gview.
Sections 3 and 4 present our motivation to use force-directed layout generation,
demonstrate our solutions for efficient parallelisation and improvements of the
algorithms. In Section 5 we evaluate our results. Sections 6 and 7 describe related
works and conclude the paper.

2 Background

RefactorErl [4] is an open-source static source code analyser and refactoring
tool for Erlang, developed by the Department of Programming Languages and
Compilers at the Faculty of Informatics, Eötvös Loránd University, Budapest,
Hungary. The phrase ”refactoring” [7] means a semantic preserving source code
transformation, so a structural change is performed in the program while it
does not alter its original behaviour. Erlang is a dynamically typed functional
programming language, thus to gather all of the necessary information for a be-
haviour preserving transformation is not straightforward. The RefactorErl comes
with an easily extensible lexer and parser. The framework of RefactorErl applies
several static semantic analyses on the source code and represents the source
code and the gathered information in a Semantic Program Graph [11].

The main focus of RefactorErl is to support daily code comprehension tasks
of Erlang developers. Among the features of RefactorErl is included a user-
level Semantic Query Language, that can assist Erlang developers in everyday
tasks such as program comprehension, debugging, finding relationships among
program components, etc. The queries are mapped to traversals in the Semantic
Program graph. For industrial scale software, the size of this graph can become
incredibly huge. Therefore, the processing of a query may take from a few seconds
up to several hours depending on its complexity.

2.1 The Semantic Program Graph

RefactorErl keeps the information extracted through static semantic analyses in
a special data structure called the Semantic Program Graph (SPG) [11]. This
graph represents the lexical, syntactic and semantic structure of the analysed
program. Typically the lexical, syntactic and semantic elements of a program
map to one node in the SPG, while the connection between these elements maps
to tagged edges between these nodes. The SPG is a rooted graph. The root is
a special node which does not represent a program unit. The role of this root
node is to be the common ancestor of nodes not having one naturally. Care must
be taken when traversing the SPG as it is not a tree and may contain directed
loops.



Optimising the Force-Directed Layout Generation 3

Although it is not a tree, the SPG exposes hierarchical properties as well. As
an example taking the subgraph of SPG representing the syntactic data of the
program, we find the nodes of files right below the root node. Below the files we
find function forms. Going one level deeper we have clauses that build up the
previously mentioned forms. Finally, on one level deeper there are the symbols
of clause names, parameters of clauses and syntactic trees of expressions in the
rows of bodies of clauses.

2.2 Code comprehension

Nowadays code comprehension or program comprehension is an increasing duty
of IDEs and other tools for software development and maintenance. Be the user
of a such a tool a newcomer to the task, employees transferring from one project
to another, project managers or a team picking up a new piece of technology,
understanding the code base and getting familiar with it leads to a much higher
efficiency on both building functional and stable software and keeping such sys-
tems running.

It is common knowledge that humans can process much more information
visually than through text or audio in a short amount of time. RefactorErl
already has methods for supporting code comprehension. Therefore, our goal is
to extend these features with a tool (Gview) for dynamically visualising parts of
the SPG (so-called views) in soft real-time, through which the user can explore
aspects of this huge graph and learn about the project at hand. In our previous
work [14], we studied the structure of such a tool and the way the data can be
transferred from RefactorErl to Gview. We also examined the different aspects
of the rendering environment.

In this paper, we investigate one of the popular graph drawing methods: the
force-directed layout generation method. Particularly the probe of algorithmic
and computational optimisation through the usage of higher order methods and
the more efficient usage of the GPU is the target of this work.

2.3 Euler’s method

As we will see in Section 3.1, the problem of generating the force-directed layout
of a directed or undirected graph can be formulated as simulating a physical
system over time and running this simulation until the layout is sufficiently close
to a fixed point. This physical system, as shown below, is described by a set of
differential equations, which ought to hold throughout the entire lifespan of the
system. Ensuring the convergence, the simplest method that can be applied in
this context is Euler’s method [1].

The essence of Euler’s method in this context is to start the simulation from
an initial layout of the graph (random or generated by other means), then take
discrete steps. In each step the algorithm calculates the derivative of the approx-
imated function, which can be interpreted as accumulating the acting forces on
each body of the system, and letting the simulation run for a given h constant



4 M. Komáromi et al.

amount of time and use the resulting layout as the next best setup, continuing
the loop.

2.4 Room for improvements

The dilemma of Euler’s method is how to choose h. When choosing a too small
value, the simulation may take ages. On the other hand, too large values will lead
to oscillations and the potential lack of convergence. Our previous approach was
to decrease h over time to ensure convergence. However, the optimal h may not
only depend on the arrangement of the graph but on the currently approximated
optimal layout. To address both issues, in this paper we inspect the adoption
of a well-known generalisation of the above method: the adaptive Runge-Kutta
method family [5].

3 Motivation

Our goal was to create a tool for dynamically and interactively displaying parts
of the SPG in RefactorErl in order to aid code comprehension. For this end we
want to research the possibilities of speeding up the above mentioned algorithm.

3.1 The force-directed layout generation

The method of force-directed layout [8] generation is a way of generating a two-
dimensional layout for directed and undirected graph alike.

The core concept of creating such a layout involves fitting a physical system
on the graph, in the following way. Take a graph G = (V,E) with weighted
vertices V and weighted edges E, totalling n vertices, weight functions m and
l! Each node of the n nodes is corresponded with a body in the system with
a position denoted by pi(t), a constant charge, mi, and a velocity vi(t). As the
position and velocity depend on the time passed since the start of the simulation,
pi and vi have the type of R → R2. The generation of force-directed layout for
graph G starts with calculating an initial, usually random, layout of the nodes,
denoted by pi(0) for i = 1..n. After the initial layout has been set up, the
algorithm follows by simulating the evolution of the physical system using the
following equations.

vi(t) =

n∑
j=1,i6=j

e(i, j, t)) (1)

e(i, j, t) =
d(i, j, t)

‖d(i, j, t)‖2
∗
(
H ∗ ln(‖d(i, j, t)‖22) ∗ li,j −

G ∗mi ∗mj)

‖d(i, j, t)‖22

)
(2)

d(i, j, t) = p(t)i − p(t)j (3)

v =
∂p

∂t
(4)



Optimising the Force-Directed Layout Generation 5

Equation 1 means that at any given time point t the velocity of the ith

body equals to the sum of the forces exerted by other bodies. Here we use the
term force, to describe instantaneous forces, which have a direct effect on the
velocity of the bodies rather than the acceleration. Such forces are characterised
by Equation 2: knowing the position of the ith and jth body at time t, we can
easily calculate the force acting on body i at time t.

Here H and G are arbitrary positive constants, used to regulate the strength
of the two types of acting force. In our research having H = 2 and G = 6100
turned up the best looking results. The most important equation is 4, which de-
scribes the analytic connection between position and velocity in the physical sys-
tem. It can be used to rewrite the former equation system as a differential equa-
tion with the common vector function of positions p = t→ (p(t)1, p(t)2, ..., p(t)n)
as the unknown, as follows.

∂p(tcur)

∂t
= f(tcur, p(tcur)) (5)

p(t0) = p(0) = p0 (6)

f(t, p) =

n∑
j=1,i6=j

e(i, j, t) (7)

The canonical form of ordinary differential equation is given in Equation 5
with the definition of f in Equation 7, while the initial position requirement is
defined in Equation 6.

Therefore, our goal is to approximate the vector function p for increasing
values of t until we get close enough to its fixed point. For this purpose, we want
to use higher order methods, to better utilise computational power and stable
convergence as t approaches ∞.

3.2 Higher order methods

The RungeKutta methods [9] are a family of explicit iterative methods, used
in temporal discretization for the approximate solutions of ordinary differential
equations. The methods include the well-known routine called the Euler Method
and can be considered as the generalisation of the routine. The method has an
adaptive version, which can adjust the step-size of the simulation and thus keep
the error below a given value, ε.

These methods are called a family for the reason that they depend on nu-
merous parameters: a, b, and c. The latter two are vectors and the former one is
a matrix [5]. These parameters can be arranged in a so-called Butcher tableau
as can be seen in Figure 1.

With the initial positions given in p0, the method proceeds to create further
approximations, p(ti+1), from the previous one, p(ti) for i = 1..∞, according to
Equations 8 and 9. The difference in the result of these two equations is used
to approximate the error introduced by taking a step of length h. Using this



6 M. Komáromi et al.

Fig. 1. Example of an extended explicit Butcher tableau of degree s

calculated error term, we can choose a new step-size in order to decrease the
error below ε, or allow larger steps in exchange for larger error term.

pi+1 = pi +

s∑
j=1

bjkj (8)

p∗i+1 = pi +

s∑
j=1

b∗jkj (9)

where

kj = f
(
ti + cj ∗ h, pi + h ∗

j−1∑
l=1

aj,lkl
)

(10)

The exact steps of choosing the next h and the very mathematics behind
this algorithm is a well-known topic and has been discussed in many papers.
Our goal is to apply this method to the problem at hand and to optimise it for
the parallel architecture of modern GPUs.

As we can see in Equation 7, our f does not depend on the p parameter
directly. The indirect dependence through d is actually replaced by the previous
best approximation pi for k1 and pi + h ∗ cj+1 ∗ kj for kj+1, thus eliminating
the need for the matrix a of the RK method. This property of the simulation
resulted from the fact that we do not employ friction, which would depend on
the velocity of the bodies but rather use instantaneous forces.

4 Methodology

Our goal is to find ways to improve the performance of the force-directed layout
generation through utilising the massively parallel architecture of modern GPUs.



Optimising the Force-Directed Layout Generation 7

The final form of the equation that we are using, taking into consideration the
relevant properties of the physical system, described at the end of Section 3.2, is
Equation 11. In each step of the simulation, we have to calculate the k coefficients
for each of the n bodies. Since the dimension of k is s and evaluating f requires
O(n) operations, the total cost of advancing one step comes out to be O(sn2).

kj = f
(
ti + cj ∗ h

)
=

n∑
b=1,a6=b

e(a, b, t) (11)

4.1 Linear parallelisation

The first idea for parallelisation that one should consider is simply assigning the
task of evaluating the exerted forces of all other bodies to a single body. Thread
i allocates a single two-dimensional vector v, loops through all the bodies in
the system and calculates the force exerted on body i through body j at the
current time point tn

1. The calculated forces are accumulated on the fly into the
local variable v of the thread and the result is stored in the k1 array. The kj+1

approximations are generated in a similar manner, however pi is replaced by
pi +h∗ cj+1 ∗kj . A schematic representation of the linear parallelisation method
can be seen in Figure 2.

Fig. 2. Architecture of basic parallelisation technique

The above mention dependence of kj+1 on kj results in the need of a global
synchronisation of all the employed threads in order to make the calculated kj
values visible to the other threads. This explicit synchronisation can only be
realised on the GPU if the number of invocations is below certain driver defined
limits, which can be queried using OpenGL command and is usually at least
1024.

1 with exception of the ith body



8 M. Komáromi et al.

In case of having a larger amount of bodies in the system than the hardware
exposed limit, we need CPU synchronisation, which basically means splitting
the calculation of each kj vector into different dispatches.

The performance bottleneck, however, comes from the fact that the amount
of work each thread is doing is proportional to sn which can grow too large. The
OpenGL standard guarantees [17] the ability to dispatch at least a maximum of
216 workgroups, all of which may consist of a maximum of at least 1024 work
items (threads). Which means that by reducing the number of threads dispatched
from n can potentially result in a great increase in performance. This idea is
further supported by the fact that GPU cores are much less powerful than CPU
cores and thus employing more of them can lead to better resource utilisation,
which gives reason to the optimisation in Section 4.2.

4.2 Refining work per thread

To better utilise the parallel architecture of modern GPUs for the problem at
hand, we want to dispatch more than O(n) threads. Thus we take Equation 11,
and for each (a, b) pair, we create an invocation, totalling in n(n − 1) threads.
After calculating each e(a, b, t) value in the summation on Equation 11, however,
we need to evaluate the actual sum of these two-dimensional vectors and this is
where parallel reduction comes in. Reduction (or folding) is the generalisation
of summation: for a given A array of size n and a binary combining function
f , the result of the folding expression is b = f(A1, f(A2, f(A3, ...))) where the
... goes until n. Parallelising a reduction is not a trivial task and is a well-
known candidate for optimisation [10]. In our example, we have the benefit that
our combination function is associative and commutative. Thus enabling us to
employ a divide and conquer technique as shown in Figure 3.

In the presented approach, we divide the reduction into levels of reduction,
in each level, the size of the array that is to be combined is decreased by half.
In each level, one thread only has to combine two elements of the array of the
current level, which would imply that the work per thread has changed to be
O(1). However by noting that the levels must come in increasing order, each
one depending on the previous one, after reusing the allocated threads through
levels, the total work per thread totals O(log2(n)).

Figure 3 shows an optimal scenario, with n being a power of two, if n is not a
power of the amount of work one thread is responsible for, then the last thread
my index out of the array. To avoid this, we need to employ bound checking.
An example for the size of 5 can be seen on Figure 4. This bound checking may
induce a maximum of O(n) extra work.

The theoretical optimum of giving one thread O(ln(n)) work can also be
achieved. However, it requires extra mathematics behind the indexing and bound
checking, and also the potential extra work growth to O(nln(n)). A visual rep-
resentation is show on Figure 5.



Optimising the Force-Directed Layout Generation 9

Fig. 3. Basic idea of divide and conquer strategy used in the parallel reduction. The
circles with T represent threads of execution.

Fig. 4. Example of maximum amount of extra work introduced by not a power of two
n, for n = 5.



10 M. Komáromi et al.

Fig. 5. Optimal ln(n) work per thread.

4.3 Memory usage and synchronization

When programming for a modern GPU, it is possible to arrange threads of
execution (say invocations) into so-called workgroups. Threads (also referred to
as work items in this context) in a workgroup can share group local memory and
can synchronise group-wise without the need for CPU intervention.

Because the levels of reduction are calculated linearly, we can store the partial
results in-place, which thanks workgroups, can be synchronised on the GPU.
This in-place storing of partial results can be seen in Figure 6. Thanks to this
technique, we only need O(n) memory and only need to transfer one element to
the CPU each frame.

Fig. 6. In-place memory usage of the parallel reduction.

However, to be able to utilise the local synchronisation of the GPU work-
groups, a workgroup size equal to the number of bodies is needed, which brings
us back to our previous problem. To solve this, we investigated how we could or-



Optimising the Force-Directed Layout Generation 11

Fig. 7. Dividing the parallel reduction into smaller tasks that can be handled by one
work group.

ganize the parallel reduction into batches of maximal size, and recursively apply
the already presented reduction method. As Figure 7 shows, by creating partial
results of maximal size, using multiple work groups and then applying a global
synchronisation, we can take advantage of the parallel architecture.

5 Results

The researched techniques were tested on a laptop with 5th generation Intel
Core i5 processor, 8GB of memory, using Intel HD 6000, running OpenGL 4.5.
Parallel GPU programs were realised with GLSL version 430 [15].

In our tests, we incrementally generated square grids of increasing sizes from
1x1 to 11x11, with random starting positions and run first the CPU, then the
GPU and refined GPU algorithms on the same starting points, around 100 times
each. As these measurements may vary according to environment properties such
as the OS scheduler or extra load from updates and scheduled cleaning etc, we
ignore the highest and lowest 5% of data and perform a normal distribution
fitting on the rest. The resulting expected value of generation time is plotted
against the number of nodes in Figure 8 and Figure 9.

Figure 8 clearly shows the enormous improvement of the GPU parallel algo-
rithm, even on the integrated card used in testing. Our expectation is that with
a higher tier dedicated card this gap is to increase further.

The comparison presented in Figure 9 shows how different techniques de-
scribed in Section 4 improves generation time for increasing sizes of grids. The
interesting thing to note is that the memory (but not workload) optimised
method performs poorer than the trivial approach. This can be due to the hard-
ware memory locality of Intel integrated GPUs, which implies that the extra
copy operations introduced by memory optimisation by hand have a higher toll
on performance than of the improvements in the locality it creates. Thus on



12 M. Komáromi et al.

Fig. 8. The huge difference of CPU and GPU algorithm, note the logarithmic scale!
Tested on grid graphs.

Fig. 9. Comparison of the refined GPU algorithms, tested on different sized grid graphs.



Optimising the Force-Directed Layout Generation 13

a dedicated card, the memory optimised version might improve performance
considerably.

We also investigated the performance of different realisations of the Runge-
Kutta family: the Heun-Euler method, the lesser famous Bogacki-Shampine
method and a high order Fehlberg method. The tests were performed on a tree
graph with nodes ranging from 3 to 133 and the same refining techniques were
applied as mentioned previously. The results of this comparison can be seen in
Figure 10. One can clearly see how the advantage of being able to take larger
steps turns into a disadvantage of higher required work per step. Based on these
measurements, we can conclude that the Bogacki-Shampine method is most ef-
ficient for our problem.

Fig. 10. Comparison different RK methods, tested on varying sized tree graphs.

5.1 Usage in RefactorErl

Figures 11 and 12 demonstrate a generated graph about the Mnesia application
and a function call graph generated by clicking on verify merge/1.

6 Related work

In the following, we would like to compare our tool with some well-known graph
visualisation tools.



14 M. Komáromi et al.

Fig. 11. View of all the modules in the Mnesia DBM.

Fig. 12. View generated be clicking on verify merge/1 in the main view of Mnesia.



Optimising the Force-Directed Layout Generation 15

6.1 Graphviz

Graphviz [6] is an open-source graph visualisation software developed by AT&T
Labs Research.

The Graphviz layout programs take descriptions of graphs in a simple text
language and make diagrams in useful formats, such as images and SVG for
web pages; PDF or Postscript for inclusion in other documents; or display in an
interactive graph browser. It supports many layout generation algorithms, such
as hierarchical or the energy minimizing stress-majoring technique. The software
package has many useful features for concrete diagrams, such as options for
colours, fonts, tabular node layouts, line styles, hyperlinks, and custom shapes.

Many software use Graphviz as an intermediate tool for displaying graphs.
For example, ArgoUML has alternative UML Diagram rendering, called argouml-
graphviz, ConnectedText has a Graphviz plugin, and FreeCAD uses Graphviz
to display the dependencies between objects in documents. Other programs can
output in DOT [13] format and thus generate drawing with Graphviz. Doxygen
also uses Graphviz to generate diagrams including class hierarchies and collabo-
ration for source code. Graphviz targets static rendering of graphs; it optimises
the drawing as much as possible and thus takes considerable time on very large
graphs, also limits the interactivity between software and user.

6.2 d3js

D3.js [18] is a JavaScript library for manipulating documents based on data. D3
helps bring data to life using HTML, SVG, and CSS. It emphasis on web stan-
dards giving the full capabilities of modern browsers without the need of tying
to a proprietary framework, combining powerful visualisation components and a
data-driven approach to DOM manipulation. This library is a modern, browser-
based solution to visualisation problems with countless useful features such as
pie charts, hierarchical graph drawing and force-directed layout generation.

D3js supports force-directed layout generation using velocity Verlet integra-
tion which may require a much smaller step size than the RK methods in order
to minimize oscillations in the solution, but the method is symplectic. Thus the
two methods were meant to solve different kinds of problems, as our version of
the force-directed layout generation uses logarithmic springs and instantaneous
forces, our simulation need not be energy conserving or symplectic for short. The
key difference between our research and d3js is that we aim to exploit the par-
allel architecture of modern GPUs, while the simulations of d3js get calculated
on the CPU2.

6.3 Gephi

Gephi [2] is an open source software for graph and network analysis. It uses a 3D
render engine to display large networks in real-time and to speed up the explo-
ration. Gephi advertises itself as having a flexible multitasking architecture that

2 unless some JavaScript optimisation happens



16 M. Komáromi et al.

brings new possibilities to work with complex data sets and produce informative
graphics. It has been used in a number of research projects in academia, journal-
ism and elsewhere. For instance, it was used in visualising the global connectivity
of New York Times content and examining Twitter network traffic during social
unrest along with more traditional network analysis topics.

Development of Gephi was started in the summer of 2008, while the last stable
update was in 2017, nearly one and a half year ago. It was created in the Java
programming language and although it features an OpenGL renderer, it uses
immediate mode rendering, that became obsolete with OpenGL 3.1 in 2009 which
means Gephi does not use GPU for layout generation. Today, with OpenGL 4.6,
much faster rendering tools are available, such as instanced rendering, VBOs
and compute shaders. Also, it is built on top of the NetBeans IDE, which means
it cannot be integrated into another project, only added as an external tool.

6.4 GoJS

GoJS [16] is a JavaScript and TypeScript library for building interactive dia-
grams and graphs. GoJS claims to let the user build all kinds of diagrams and
graphs, ranging from simple flowcharts and org charts to highly-specific indus-
trial diagrams, SCADA and BPMN diagrams, medical diagrams like genograms,
and more. The library is meant for implementation of interactive diagrams and
visualization on modern web browsers and platforms. It allows easy construc-
tion of custom and complex diagrams of nodes, links, and groups with customiz-
able templates and layouts. As a matter of fact, it does not depend on any
JavaScript libraries or frameworks, so it should work with any web framework
or with no framework at all. The library focuses on interactivity and flexibility.
There are many demos available online on the webpage of the tool. It also offers
rich features like drag-and-drop, copy-and-paste, in-place text editing, tool-tips,
templates, data binding and models, transactional state and undo management,
palettes, event handlers, commands, and an extensible tool system for real-time
custom operations on the diagram. It also features many automatic layout gen-
eration algorithms, which can be extended by the user of the library.

One of such automatic layouts is the force-directed layout generation algo-
rithm. They describe the method as a layout generation method that treats the
graph as if it were a system of physical bodies with repulsive electrical, attracting
gravitational, and spring forces acting on them and between them. The engine
uses the CPU for layout generation, thus it is not optimized for modern parallel
GPUs.

7 Conclusion

The RefactorErl framework has several graphical and command-line interfaces,
that support refactoring, static code analysis and code comprehension as well.
The tool uses the so-called Semantic Program Graph as the intermediate repre-
sentation of the source code which includes static semantic information beside



Optimising the Force-Directed Layout Generation 17

the syntactic and lexical information. We have extended RefactorErl with Gview.
Gview is an efficient and interactive graph visualisation tool, uses force-directed
layout generation. This algorithm was implemented using Euler’s method which
is only stable with potentially very small step-sizes.

In this paper, we presented a better approach to simulating the evolution of
the physical system that is the system of bodies and springs defined by graphs we
want to plot. The above described method is based on the well-known adaptive
Runge-Kutta method family, a generalisation of Euler’s method. We presented
a trivial approach for parallelising the RK methods on the GPU and analyse
this linear technique. We further investigated and measured optimisation op-
portunities for the GPU algorithm. These optimisations included different ways
of refining the memory usage, changing the distribution of work among threads
to reach a better configuration and the importance of different synchronisation
functionalities.

In our future work, we plan to investigate other layout generation methods
and optimise them for GPU.

Acknowledgment

The project has been supported by the European Union, co-financed by the
European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002) and the Hungarian
Government through the New National Excellence Program of the Ministry of
Human Capacities.

References

1. Atkinson, K.: An Introduction to Numerical Analysis. Wiley (1989),
https://books.google.hu/books?id=IBDDQgAACAAJ

2. Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for ex-
ploring and manipulating networks. In: Third international AAAI conference on
weblogs and social media (2009)

3. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for drawing graphs:
an annotated bibliography. Computational Geometry: Theory and Applications
4(5), 235–282 (1988)

4. Bozó, I., Horpácsi, D., Horváth, Z., Kitlei, R., Kőszegi, J., Tejfel, M., Tóth, M.:
RefactorErl, Source Code Analysis and Refactoring in Erlang. In: Proceeding of the
12th Symposium on Programming Languages and Software Tools. Tallin, Estonia
(2011)

5. Dormand, J., Prince, P.: A family of embedded runge-kutta formulae. Journal of
Computational and Applied Mathematics 6(1), 19–26 (1980)

6. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphvizopen
source graph drawing tools. In: International Symposium on Graph Drawing. pp.
483–484. Springer (2001)

7. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Addison-Wesley (1999)

8. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Software - Practice and Experience 21(11), 1129–1164 (1991)



18 M. Komáromi et al.

9. Harper, C.: Introduction to mathematical physics. Prentice-Hall physics series,
Prentice-Hall (1976), https://books.google.hu/books?id=DcfvAAAAMAAJ

10. Harris, M., et al.: Optimizing parallel reduction in cuda
11. Horváth, Z., Lövei, L., Kozsik, T., Kitlei, R., Vı́g, A.N., Nagy, T., Tóth, M., Király,

R.: Modeling Semantic Knowledge in Erlang for Refactoring. In: Knowledge En-
gineering: Principles and Techniques, Proceedings of the International Conference
on Knowledge Engineering, Principles and Techniques, KEPT 2009. Studia Uni-
versitatis Babeş-Bolyai, Series Informatica, vol. 54(2009) Sp. Issue, pp. 7–16. Cluj-
Napoca, Romania (Jul 2009)

12. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. In-
formation Processing Letters 31(1), 7–15 (1989)

13. Koutsofios, E.E., North, S.C.: Drawing graphs with dot (1991)
14. Mátyás Komáromi, Melinda Tóth, István Bozó: An Efficient Graph Visualisation

Framework For RefactorErl, Paper accepted into the Special Issue of Studia Uni-
versitatis Babes-Bolyai, series Mathematica, Informaticaand Physica, MACS’18,
12th Joint Conference on Mathematics and Computer Science, Cluj-Napoca, June
14-17 (2018)

15. Rost, R.J., Licea-Kane, B., Ginsburg, D., Kessenich, J.M., Lichtenbelt, B., Malan,
H., Weiblen, M.: Opengl(r) shading language (2004)

16. Shahzad, F., Sheltami, T.R., Shakshuki, E.M., Shaikh, O.: A review of latest web
tools and libraries for state-of-the-art visualization. Procedia Computer Science
98, 100–106 (2016)

17. Shreiner, D., Sellers, G., Kessenich, J., Licea-Kane, B.: OpenGL programming
guide: The Official guide to learning OpenGL, version 4.3. Addison-Wesley (2013)

18. Zhu, N.Q.: Data visualization with D3. js cookbook. Packt Publishing Ltd (2013)


