
1

Gview: Visualising software dependencies in order to
support code comprehension1
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Abstract

It is always a great challenge to maintain industrial-scale software. It requires a full under-
standing and awareness of the different components and their connections to avoid introducing
software errors. Aiding the process of software maintenance by visualisation is a very timely
topic, as humans are more efficient at understanding visual information than written. In our
paper, we introduce Gview, a new tool for interactive graph representation. The presented
graph is interactive and utilises the GPU to speed up layout generation. We integrated Gview
with RefactorErl. RefactorErl is a source code analyser and transformation tool that also
supports code comprehension for Erlang. The tool represents the syntactic and semantic in-
formation in the Semantic Program Graph, containing a massive amount of nodes and edges
as input for Gview.

1 Introduction

Visualisation of software is mapping a software system and its architecture to a visual representa-
tion. The created view can be static, interactive, or even animated [5].

The visual representation of software may improve the productivity of developers, as it supports
code comprehension, helps to find inconsistencies, and to improve quality. The software visualisa-
tion extracts and combines closely related information of the system. The visualised representation
is easier to comprehend than gathering the same information manually from the source code.

RefactorErl [3] is a static source code analyser and transformation tool for Erlang. It aims to
support the everyday code comprehension tasks of Erlang developers. Since presenting the semantic
information about the source code is quite natural on a graph, we started the Gview project as a
new graph visualisation component for RefactorErl. The main goal was to be capable of rendering
the huge Semantic Program Graphs [9] as well.

The main contributions of this paper are the introduction of Gview which is a new interactive
graph visualisation tool and the extension of RefactorErl that integrates Gview. Gview was designed
to utilise the GPU resources, and provide different layout generation mechanisms, to support a
generic data transfer protocol and an easy-to-use interface for different tools. We present the
integration of Gview with RefactorErl and some use cases. However, the tool was designed for
software visualisation, its usage has no restrictions.

The rest of the paper is structured as follows. Section 2 introduces the tool RefactorErl and
the first prototype of Gview. Section 3 presents details about the generalised and RefactorErl-
independent Gview and its integration with RefactorErl. Section 4 describes use cases about how
to use Gview for code comprehension. Finally, Sections 5 and 6 present related work and conclude
the paper.

1”Application Domain Specific Highly Reliable IT Solutions” project that has been implemented with the support
provided from the National Research, Development, and Innovation Fund of Hungary, financed under the Thematic
Excellence Programme no. 2020-4.1.1.-TKP2020 (National Challenges Subprogramme) funding scheme.
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2 Background

Erlang [1] is a functional, concurrent programming language that was designed to build distributed,
soft real-time, robust, fault-tolerant applications. Although the language is functional, industrial-
scale applications require tools to support software maintenance, code comprehension, refactoring,
etc.

RefactorErl [3] was designed to provide a static source code analyser framework with thorough
static semantic analyses for the programming language Erlang. The tool offers a wide range of
source code transformations as well. RefactorErl represents the source code in a so-called SPG,
the Semantic Program Graph [9]. The SPG contains the syntax tree of the source code enhanced
with lexical information, and different analysers are adding semantic information about the source
code relations.

The tool [21] provides more than twenty refactoring steps for the users. Besides the well-known
renaming, moving, etc. transformations RefactorErl supports parallelisation by refactorings [31, 4,
14].

RefactorErl aims to support code comprehension in various ways. It defines a query lan-
guage [30] to allow user-defined semantic queries about the source code and present the gathered
information in different formats. For example, the web interface of the tool lets the user navigate
between the source code and the results of the queries.

It also implements dependence analyses of software components and is able to utilise the de-
pendence relations for software clustering. RefactorErl defines a duplicated code detection and
elimination component.

RefactorErl is able to handle industrial scale applications [28]. For that size, the Semantic
Program Graph and also the gathered views are so huge that a static graph visualiser is not able
to present it to the developer. However, it is not necessary to show the entire graph to the user.
Most of the time the user wants to check a filtered subgraph, a predefined view only, and explore
the rest of the graph interactively.

Therefore we started to build Gview as part of the RefactorErl project to visualise different
views of the Semantic Program Graph. The very first version of Gview [11] was only able to visualise
the module/function views of the SPG that was printed to a static dot file [13].

3 Gview – Visualising software components

Our solution for the problem of visualisation can be broken down into four sub-tasks: data transfer,
layout generation, displaying the graph with the generated layout and handling user interactions.
We define different views of the graph. For example, the dataflow view of a given variable shows
all the possible ways how data could be assigned to it. These views have a specific meaning in the
context of the host application (RefactorErl) and thus must be generated by it and converted into
a visual description containing all the desired graphical properties of the resulting plot such as line
thickness and colour. Figure 1 shows an overview of the internal structure of Gview.

3.1 Data Transfer

RefactorErl has its own graph-based internal representation to store the analysed Erlang source
code. The graph is accessible through an Erlang querying interface. The data is stored in Erlang
terms. Thus our first sub-task is to define a protocol to transfer the data from RefactorErl to
Gview.

Our initial approach was based on intermediate data storage such as a file formatted in the
DOT language of Graphviz, where RefactorErl would export the whole SPG, often resulting in
hundreds of megabytes in size and thus in slow startups. This method also brought the additional
cost of our method being dependent on the specifics of the Semantic Program Graph. To improve
the visualisation, we introduced dynamic data transfer [16]. The transfer is done through our binary
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Figure 1: Representation of the inner division of sub-tasks in Gview.

protocol which was designed to be host independent while being as efficient as possible while not
forming a performance bottleneck. The protocol defined in our work also has a control layer that
enables host applications to programmatically change properties of the plot such as the used layout
algorithm.

Our protocol is a byte protocol, meaning it can be used over any stream that is able to transfer
bytes between applications such as TCP/IP. Our implementation with RefactorErl uses the Erlang
Ports interface which builds on the standard input and output file handlers of the graph plotter.
First, the host application and the plotter exchange a two-way handshake message as seen in
Figure 2, stating the used version of the protocol, which is currently 1.0, resulting in an error if
the two are not compatible.

Figure 2: The initial two-way handshake message. Not a large but rather important message.

After that, the plotter application is up and running, and is waiting for new commands. The
command string is sent in ASCII encoding, while the label string is in UTF-8. The first important
command is to change the layout generation algorithm. For example, to change the layout from
force-directed to hierarchical. To accomplish this, the host must send two messages: ”set layout”
and the id of the new algorithm, for example, ”layered” for layered hierarchical as seen in Figure 3.

Figure 3: Example of a message sent by the host to set the used layout algorithm to layered.

The host can also issue a plot command via sending ”set view” and then sending the description
of the graph. A summary of this message can be seen in Figure 4.

Sending a graph description begins with sending four integers: the number of nodes, the size of
the node palette and edge palette and the number of selectors (details on selectors can be found
in Section 3.4). Each entry of the node palette describes the appearance of a given type of node,
consisting of the radius and the shape of the node. Similarly, one entry of the edge palette holds
a preferred width and colour of the edge and the shapes on the end of the given edge. This visual
description of the nodes and edges can be extended in the future. After the integers, the entries of
the node palette and the edge palette are sent, each in a separate message. In the next messages, the
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Figure 4: Summary of the complete plot message.

labels of the nodes, the tooltip strings, the selector counts, and the selector labels are transferred.
After that, a list of integers is sent for each node, denoting the neighbouring nodes of the current
node (edge list representation). These integers hold the local id of the nodes which is the number of
the given node and thus independent of the global id (used in the host) of the node. The last step
is to send node weights, node types, edge weights, and edge types. Types are integer lists while
weights are lists of floating-point numbers. The structure of the header and the palette entries can
be seen in Figure 5.

Figure 5: The header message and the palette entry messages of a set view message.

Node and edge types indicate the id of the entry in the palettes (node and edge palette respec-
tively) at which the description of the given node or edge is located, with this palette method, a
huge bandwidth reduction can be achieved for a lot of nodes and edges often share these details.
Weights, on the other hand, can mean different properties depending on the currently used layout
algorithm but in general, they can be understood to represent the importance of a node or edge,
for example when using the force-directed layout, more important edges are generally shorter and
more important nodes repel other nodes stronger. The key idea to make the transfer fast is that
since each message is preceded by a four-byte integer, containing the length of the message, we can
create a byte buffer from all the messages and let the used implementation stream the bytes in an
efficient manner.

3.2 Layout

The second task we defined is to generate a suitable layout for the view that is currently being
plotted. Many layout algorithms have already been developed as this is an important field of visual
computing. In our previous paper [17], we presented an efficient GPU parallel extension to the
famous Force-Directed Layout algorithm and also a cheap layered layout based on The Sugiyama
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Method.

The main idea in the Force-Directed Layout (FDL) is to build a physical system corresponding
to the graph; each node gets represented by a negatively charged body while edges become springs
between these bodies. According to the Coulomb law and Hooke’s law, given their position, the
acting forces can be expressed on each body, which results in a differential equation system with
time as the variable of the unknown function. The goal is to find an approximation for the unknown
function. The fixed point of this function represents a physical equilibrium of the system, which
will be the final layout generated by the algorithm. To approximate the unknown function, we use
the higher-order Runge-Kutta methods, which are excellent candidates for massive parallelisation.
In our previous paper, we worked out the details of parallelizing this algorithm in a highly efficient
manner and cover various memory and workload optimisations too.

An example of a Gview-generated force-directed layout for an 8 by 8 grid is shown in Figure 6.

Figure 6: Force-directed layout

The Layered Hierarchical Layout [2, 26, 6] generation algorithm starts with assigning nodes to
layers, which layers will determine the Y coordinate of the final position of the node. In the next
step, the algorithm calculates the ordering of nodes on each layer to minimize edge crossings, since
this is a very hard (NP-complete) task even for two layers, different approximations are employed
here. In the final step, X and Y coordinates get calculated for each node. Our version of the
algorithm aims to assign more horizontal space for nodes with more descendants on deeper layers,
which tends to produce visually pleasing layouts for graphs that possess a tree-like structure. The
layer assignment and the crossing minimisation can be done in various ways and can be found in
many related research papers.

An example of a Gview-generated layered layout for a relatively small random tree is shown in
Figure 7.

While Layered Hierarchical Layout is working well for trees, the Force-Directed Layout is opti-
mal for graphs with no special properties or specific structures such as function call graphs. Thus
our tool, Gview uses the Force-Directed Layout as the default layout algorithm for graphs for the
algorithm produces visually pleasing layouts. The currently employed algorithm can be dynami-
cally changed through our data transfer protocol. Gview is extensible and in the future, we plan
to investigate more layout algorithms such as layout generation by Stress-Majoring.

3.3 Plotting

Since our goal is to develop an interactive visualisation, the third task plays a very important role.
While the layout is calculated, the tool presents and maintains the latest specified view using the
graphical description. We aimed to preserve platform independence while also not sacrificing low-
level access to hardware and thus the ability to gain control of the massively parallel architecture
of modern GPUs. Thus we based Gview on the cross-platform application programming interface
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Figure 7: Layered layout

(API) OpenGL (Open Graphics Library) [24]. With OpenGL one is able to utilise the GPU to
render the 2D meshes generated from the layout algorithm. It also features Compute Shaders which
are Shader Stages that can be used for computing arbitrary information. In our implementation,
we use Compute Shaders to support FDL parallelisation. While OpenGL enables low-level control
of the GPU, to handle user interaction such as a click of the mouse button, or keyboard shortcuts,
and to actually open a window in which the OGL rendering commands can take effect, we used
the library Flib. Flib [12] is an open-source GUI (Graphical User Interface) library built on top
of OpenGL, written in C++, and hosted on GitHub. It is also multi-platform and uses the native
window handling library on each supported system, for example, WINAPI on machines running
Windows. The GUI functionality of Flib is backed by wrapper classes around OGL objects, such
as the Array Buffer Objects (ABOs), to take advantage of OOP concepts like RAII (Resource
Acquisition Is Initialisation) to ease the task of resource management and in the same time remain
as efficient as possible. Based on the resource handling classes Flib contains a sprite engine featuring
an automatic image packer called a texture atlas for packing images on a single OGL texture object
to then be used by the engine. These sprites only contain small information, such as position, size,
rotation, and occupied rectangle on the texture atlas, and thus by realizing the background of
each GUI entity, such as buttons and sliders, using sprites, all of them can be drawn in a single
draw command. Text is displayed in a highly similar manner: each font gets a personal texture
atlas and characters are plotted via sprites. The GUI is modelled as a tree in which each node
is a GUI element. The events are passed in a top-down manner, thus every element receives and
reacts to each event. To automatically convert basic events such as mouse movement and mouse
wheel scrolling into more complex events like zooming or rotation, Flib uses listener classes one
can inherit from to acquire desired callback functions. Flib also has the utility to tessellate line
segments into thick lines built from triangles and generate distance-to-edge values which we used
when employing the anti-aliasing technique DEAA [10] (Distance to Edge Anti Aliasing).

Since we aim at interactivity, we wanted to minimise the time spent on the actual drawing while
maintaining good-quality graphics. Upon each event such as mouse wheel movement, dragging with
the mouse or when a new approximation of the final layout is created, the plotting data is used
to generate drawing meshes (tessellated on the CPU) using Flib. For each visible node, we create
a regular polygon with n sides, depending on the zooming level and the requested shape of the
node. This dependence on the zooming level is called the Dynamic Level of Detail. We use this
technique to reduce the generated geometry by up to a factor of 100. We also tessellate each visible
edge of the plot and send the resulting geometry in one batch to the GPU memory. This streaming
process, thanks to the small amount of geometry, takes only a fraction of the update time. Since
the drawing is organised into single batches per triangle and line, we can issue the drawing in only
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two draw calls which minimise drawing setup costs. The events mentioned above may seem to be
frequent to the user. However, at 60 events per second peak with thousands of nodes, it is still an
easily manageable task for an average modern CPU. We conducted measurements of hundreds of
frequently occurring views (about 20 to 30 nodes per view) and determined the amount of time
needed to parse the input graph description from our binary protocol was at most 5ms which is not
at all significant. Updating the layout using parallel FDL with one iteration, however, although
only taking around 1 ms, needs to be calculated a large number of times. We also evaluated the
time taken to tessellate the given view into raw drawing data, which as our predictions showed,
does not take up much of the update time (around 0.5ms at most). Since we are running the layout
generation on a separate thread (see Section 3.4) synchronizing the data on the drawing thread and
the worker thread takes up time too, but it is not significant. The summary of our measurements
is shown in Figure 8.

Figure 8: Relation of the time spent on transferring a view, updating one iteration on it, drawing
it, and synchronisation. Note that layout updates occur much more frequently than data transfers.

3.4 Interaction

User interaction happens through the Graphical User Interface of Gview, backed by Flib, built
on top of OpenGL, via mouse clicks, keyboard buttons, etc. Hovering over a node or the label of
the node highlights it and reveals smaller nodes around it, called selectors, indicating the selected
node. Selectors only have a label and can be specified from the host application as described in
Section 3.1. Different types of nodes may have different sets of selectors, for example, a function
node has an expand selector if it is the centre of the view for expanding the call depth shown
and a lex selector to switch to the lexical nodes of the SPG spanning from the function node.
Clicking a node triggers message sending. It sends the host application the clicked and node

messages and an integer representing the id of the node. When a selector is clicked, beside the
messages clicked, selector, and the node id, the number of the selector is also sent. Certain key
combinations, like CTRL+Z and CTRL+Y, also produce messages undo and redo accordingly.
With these combinations, the user can go step by step back and forward in the history of previous
steps. The host application can react to these events by loading a new view or ignoring them at
all without any problem.

Our previous approach [11] was a single-threaded design. Thus, the layout generation, drawing,
and user input handling were done on the same thread. In some cases, when the layout-generating
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algorithm took more time than usual, it delayed user interaction handling. To remedy this prob-
lem, we split up the process into two threads as shown in Figure 9: the first is responsible for user
interaction handling and drawing the actual graph quickly from the last synchronised layout, and
the second is responsible for layout generation. The two threads share a mutex used to protect
the shared layout data which is updated by the worker thread after every iteration, or after the
completion of the generation if the algorithm is non-iterative. This way the zooming and translat-
ing can remain interactive even with heavy layout calculations in exchange for a synchronisation
overhead.

Figure 9: Interaction of the rendering thread which also handles the user interaction and the worker
thread that generates the layout.

3.5 Integration with RefactorErl

RefactorErl already contains numerous refactorings and code comprehension-supporting function-
alities. To further enhance the code comprehension capabilities, we wanted to extend it with graph
plotting capabilities to allow the traversal of the Semantic Program Graph (SPG) interactively.

Our design of the graph displaying component of RefactorErl relies on the strength of the Erlang
programming language: robustness. The SPG can grow to an enormous size (hundreds of thousands,
or millions of nodes and edges), thus when one wants to display only the closely related entities of
a subgraph in focus the dynamic capability of Gview is a good match. The implementation uses
Erlang ports for dynamic data transfer and command protocol between RefactorErl and Gview.
The standard input and output of the opened application (Gview in our case) are turned into binary
input and output channels. Through this channel, the processes can communicate by sending and
receiving messages. On Windows, this is not that straightforward as the newline characters are
changed which requires special handling.

The exact mechanism of the Erlang ports is implementation dependent, however, according
to our estimations, even larger views of thousands of nodes can be sent quickly. To confirm our
estimation, we measured the data transfer rates on one hundred views of different sizes ranging from
the trivially small to even two thousand nodes and found that the loading times never exceeded
one-third of a second, proving that the Erlang Ports are capable of delivering sufficient speed.

According to Erlang’s ”Let It Crash” philosophy, we wanted to let the smaller building blocks
of the tool crash and then restarted without the end user even noticing it, thus the communication
between the static analyser and the plotter is governed by an Erlang server, gview server. The
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responsibility of gview server is to accept incoming plot requests, and layout changes and based
on them create the necessary data to be sent to Gview and also receive and propagate events from
Gview to the view switch handling code. For large graphs, such as dataflow graphs, it may take
some time for this server to collect the necessary information for plotting.

The gview monitor is a server process that monitors the gview server and acts as a proxy
between the user/program and Gview. Thus the caller of the Gview interface of RefactorErl does
not have to wait to receive the data until the graph query finishes. Since Gview is an external
program RefactorErl stays unaffected by an unexpected failure of Gview.

The module gview gives an interface that hides the monitor and the server and makes the usage
of the tool much more intuitive. Interface functions such as gview:start/0, gview:layout/2 or
gview:load/2 can be used to pass commands to Gview, for example, P = gview:start() starts
a new instance of Gview and assigns its identifier to variable P which then can be used to plot
all the loaded modules and functions via gview:load(P, modules) or change the layout view
gview:layout(P, layered) or query the status of the connection via gview:status(P).

An overview of the application structure can be seen in Figure 10.

Figure 10: Our graph visualisation architecture, Gview.

4 Using Gview for code comprehension in RefactorErl

In this section, we show two use cases to demonstrate how Gview supports code comprehension. In
our use cases, we analysed the Mnesia DBMS system [15] and built the Semantic Program Graph
from it. The first use case generates a function view of the SPG, while the second uses the syntactic
view to explore the graph searching for possible values of different language constructs.

Figure 11 illustrates the force-directed layout-based representation of the Mnesia modules and
functions. Mnesia has 26 KLOC, which is a medium-scale Erlang application. It contains 1804
function definitions in 30 different modules. However, the presented view contains the referred
functions and modules as well. Therefore in total 63 modules and 2104 functions are visualised.

After starting RefactorErl’s interactive Erlang shell interface, we can easily start Gview and
load the module view with the following commands:

P = gview:start().

gview:load(P, modules).

Our interactive tool makes it possible to select a node in the graph and generate a new view.
Figure 12 shows the graph created when we clicked on module mnesia log.

The same view is available through a direct call in the Erlang shell as well:

gview:load(P, [{modules, [mnesia_log]}]).

The size of these graphs for even this medium-scale application is too big but makes a good
starting point for further analysis. The interactive nature of the tool makes it possible to easily dig
deeper into the modules/functions/structures to find the required information.
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Figure 11: Mnesia view

Figure 12: mnesia log view

4.1 Call graph view

Clicking on the open log/3 function in Figure 12 results in the graph shown in Figure 13. This
function call graph contains information about the called functions and the caller functions as well.
Coloured, directed edges differentiate the functions calling open log/3 (blue edges) and those that
are called by open log/3 (red edges). The software checks the size of the call graph and sets a call
depth limit if needed to result in a comprehensible graph. The minimum level of depth is one. The
depth of the plot can be adjusted by the user (with buttons located right above the root node).

Any element of the graph can be clicked to expand the next level of the call graph. For example,
selecting the open log/5 label results in the graph shown in Figure 14.

The user can easily switch between the force-directed and layered layout and choose the most
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Figure 13: open log/3 function call graph

Figure 14: open log/5 function call graph

appropriate for the task. For example, the following command results in the view presented in
Figure 15:

gview:layout(layered).

Using call graphs in software maintenance is useful, it can contribute to bug detection and
fixing and code comprehension tasks as well. An interactive tool, such as the integrated Gview to
RefactorErl, provides tools to help the developer to draw and explore the call graph. The semantic
information available in RefactorErl extends the classical static call graph views with dynamic call
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Figure 15: open log/5 function call graph (layered view)

information as well [8].

4.2 Enhanced syntax view

Besides the high-level function view, a developer might be interested in the details of the imple-
mentation as well. At this point, Gview provides a syntactic view of the functions and expressions
as well. The syntax view of open log/6 is illustrated in Figure 16.

Figure 16: open log/6 high level syntax view

The syntax view can be further expanded with new levels of details from the syntax tree until
the developer finds the appropriate information (Figure 17).

Besides the syntax tree, the interface makes it possible to reach semantic information from the
Semantic Program Graph of RefactorErl. For example, a view can be generated from the dataflow
information [29, 27]. The dataflow reaching analysis of RefactorErl is able to calculate the possible
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Figure 17: Extending the syntax view of open log/6

values of a particular expression. During the analysis, all possible execution paths are considered
and the possible values of the expressions are collected. This information can be useful in the case
of debugging, code comprehension, testing, etc. For example, pointing the possible values of an
expression can help in fault localisation when we are analysing runtime errors containing some
information about the values causing the error. Using dataflow reaching we can also calculate
the possible arguments of a function call, thus, we can narrow the scope of our investigation by
selecting and focusing on the matching function clauses only.

Figure 18: Values of the variable Mode

Using Gview, the developer who is interested in the possible values of a variable only needs to
click on the targeted variable node. For example, by clicking on the variable Mode on the syntax
view (Figure 16) we can deduce from the generated graph (Figure 18) that the possible values are
read write and read only.

However, the desired information is not always available within a single step. Clicking on Fname

in Figure 16 does not give us the possible values as a constant expression (Figure 19) since it is
calculated by the function application filename:join(...).

Figure 19: Values of the variable Fname
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Thus, we have to further investigate the structure of the application that is concatenating a
directory name with a filename. Once we click on the function application node (the right-hand
side node in Figure 16 ), Gview plots the syntax tree of the application (Figure 20). Here we can
find the name of the file represented by the Fname node. Selecting this node will list all the possible
file names used during the concatenation (Figure 21).

Figure 20: Exploring the syntax tree values of the application filename:join(...)

Figure 21: Exploring the values of the variable Fname

Exploring the syntax tree and using dataflow relations are extremely useful in bug-fixing tasks.
Once the developer detects a wrong value at a certain point of execution, the enhanced syntax tree
explorer can help to find out where the wrong value comes from.
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4.3 Using the interactive graphs

RefactorErl can export the Semantic Program Graph to a dot file, thus for a few lines of code dot2

is able to visualise the SPG. However, even for a small application (Crypto, 3KLOC), the graph
contains thousands of edges and nodes. For a medium-scale application (Mnesia, 26KLOC) the
graph contains more than a million relations (See Figure 7.1 in [16] and a partial view in Table 1).
dot is not able to generate a layout for such applications, therefore without Gview, we were not
able to visualise the SPG. It is obvious, that the user does not want to see thousands of nodes
on a static graph, but rather wants to start with a high-level view and dynamically expand it to
get the desired details. Using the external dot command was not the best tool to develop this
functionality, thus we started the implementation of Gview.

Table 1: Exporting the Semantic Program Ggraph [16]

Project
DOT
size

DOT
generation

Nodes
Edge
count

Function
count

Crypto 9,84 MB 22,3s 24 551 86 222 174
Sasl 45,84 MB 151,9s 107 936 438 508 928
SSH 94,71 MB 241,2s 230 398 913 924 1117
Mnesia 141,79 MB 477,1s 332 360 1 374 466 2104
StdLib 283,74 MB 1028,4s 652 300 1 438 325 3206

RefactorErl has a dependency graph calculation and visualisation component. This can be
considered as predefined views on the module and function level. The function level dependency
graph is a call graph. We compared the layout generation for the dependency graphs and the
function call graph view generation of Gview. For the Mnesia application generating the function
dependency graph took more than an hour, and it took for 4 minutes to open the static graph.
Gview was able to generate the layout in 2 minutes and open it in 14 seconds to interactively
traverse and further expand it.

5 Related work

Following are some tools suitable for software visualisation that we would like to compare to our
solution.

With the tool IslandViz [20], one can explore modular software systems in virtual reality. The
metaphor ”island” is used for modules, each module representing a distinct island. The system is
displayed as a virtual table, where users can explore the software by performing navigational tasks
on multiple levels of granularity. The tool enables the users to get an overview of the complexity of
the software and traverse the system interactively and explore the modules and the dependencies
between them. The project is built on Unity, a cross-platform real-time game engine developed by
Unity Technologies. IslandViz offers two layout generation algorithms, one pseudo-random based
and a variant of the Force-Directed Layout. The random-based algorithm incrementally puts nodes
(islands) on random positions, retrying up to fixed times if the placed island collides with another.
The problem with this approach is that it disregards the actual structure of the graph. The other
available option in the software is an FDL which differs from our variant. The IslandViz uses
regular physical springs as opposed to logarithmic springs and employs friction instead of instan-
taneous forces. However, the real difference lies in the terminating condition and the underlying
mathematical tool. The computation in IslandViz stops after a certain number of steps. Our so-
lution is able to keep a moving average of the maximum relative error thanks to the embedded
higher-order methods and terminates only if this error is below a certain threshold. Our redesign of

2A command from the GraphViz toolchain
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the Force-Directed Layout algorithm [17] also targets the massively parallel architecture of modern
GPUs which results in a massive performance increase over the CPU implementation.

Graphviz [7] is a well-known graph visualisation software package developed by AT&T Labs
Research in 1991 and is open-source. Among the supported layout generation algorithms, there
are energy-minimising, stress-majoring methods, and hierarchical ones, each of which has its own
program in the Graphviz package. These programs transform the input graph, described in a text-
based language, and apply the given technique to produce an image file that can be then embedded
in other applications and web pages. Many details can be adjusted using these tools, such as the
colours, fonts, tooltips, line styles, and the shape of nodes. Among the several applications that
use Graphviz, there are many UML drawing tools and computer-aided design systems such as
FreeCAD.

Numerous software packages are able to produce graph descriptions in the native language of
Graphviz, the DOT graph description language. Since the RefactorErl is able to export the entire
SPG to DOT, we tried the approach of parsing the exported DOT file in the Gview plotter. This
version resulted in slower startups.

There were former attempts at using Graphviz as a graph plotter for RefactorErl. The resulting
graphs were static, and it was too complicated to switch between different views. In general,
Graphviz targets and excels at the static plotting of graphs that did not meet our requirements.

CodeCity [22] is a software visualisation tool that brings software systems to the screen with a
city metaphor. In the interactively discoverable 3D city classes show up as buildings that stretch
higher depending on the complexity of the given class. The buildings that represent classes are
grouped into neighbourhoods based on their packages. The program uses OpenGL to render the
scene and was built using VisualWorks Smalltalk. The goal of the project is to aid users in dis-
covering software artefacts such as god classes that appear as large skyscrapers on the landscape.
CodeCity targets the visualisation of different code metrics and thus is not suited for plotting other
relations such as dataflow or function dependency graphs.

CityVR [19] is an interactive software visualisation tool that uses virtual reality to achieve
the gamification of software engineering. Similarly, how headphones help to filter noise, the used
I3D medium enables users to isolate themselves from the outer world in a visual way and thus
encourages immersion.

CityVR was built using Unity3D 5.5 and uses CodeCity to create the displayed model which
is generated from source code files. Since monitors are the most frequently used tools for software
visualisation, a more exciting and thought-provoking way of exploring software dependencies and
metrics is using a virtual reality headset. This way users of such visualisation tools can achieve
better recollection [18].

Sourcetrail [25] is a lightweight source explorer that supports many mainstream IDEs and
code editors. It features interactive code and dependence exploration and fast searching function-
ality. The aim of the program is to help programmers in quickly find relevant pieces of code in
large projects without digging through the code base but rather through interactive diagrams of
variables, functions, and classes. They argue that by exploring the code through this visual rep-
resentation, finding important information is much easier and more convenient. By accompanying
diagrams with relevant code snippets, Sourcetrail shortens the investigation time. It is a stan-
dalone program and integrates with IDEs and editors such as VSCode through free downloadable
extensions.

One drawback of Sourcetrail is that it only supports projects written in C/C++ or Java and
thus is not applicable in the case of Erlang projects.

Understand [23] is a multi-platform Integrated Development Environment (IDE) developed by
SciTools for maintaining, measuring, and visualising code bases. It features many code metrics from
the basics like class or file count to custom metrics such as knots, path count, and weighted methods
per class. Understand employs an incrementally built indexing that enables users to search quickly
in even millions of lines of code. It supports control flow graphs, hierarchy graphs, dependency
graphs, and many more but no dataflow graphs. Various coding standards can be checked by the
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tool such as naming guidelines and general best practices. The tool can generate overviews, like
quality or metrics reports.

Using Understand naturally comes with the limitation that it has to be the IDE of choice for a
project unlike in the case of Sourcetrail. Despite being able to handle more than a dozen languages
and projects that use more than one language, Understand does not support Erlang, which is an
important aspect of our scope.

6 Conclusion and future work

Providing tools to support code comprehension and visualise software are highly desirable in
industrial-scale development. In this paper, we demonstrated our tool, Gview, which was designed
to provide an interactive, dynamic, tool-independent visualisation framework built on top of Flib.
Gview also utilises the GPU to provide efficient layout calculation.

We presented the internal design and structure of the tool. We demonstrated the data transfer
protocol defined as a communication channel to Gview and also the interaction handlers. The
paper describes the graph layout calculation algorithms and plotting. The current version of the
tool supports force-directed and hierarchical layout generation. In the future, we plan to extend
the options.

We presented the integration of Gview with RefactorErl to demonstrate the applicability of
Gview in large-scale software visualisation. The usefulness of the tool was shown in code compre-
hension use cases through call chain detection and expression value investigation.

Gview is open source and available on GitHub: https://github.com/Frontier789/Gview.
The integration with RefactorErl will be released soon with the upcoming release of the tool.
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